Timing Driven Routing Tree Construction

Peishan Tu, Wing-Kai Chow, Evangeline F. Y. Young

Department of Computer Science and Engineering,
The Chinese University of Hong Kong

June 17, 2016

Outline

Introduction

Problem Formulation

The Algorithm

Experimental Results

Conclusions

Outline

Introduction

Problem Formulation

The Algorithm

Experimental Results

Conclusions

Introduction

Timing driven tree construction in routing:

- As technology scales down, a more effective routing tree construction approach is needed.
Existing works:
- Path length and total wirelength trade off e.g. PD and BRBC
- Elmore delay considered e.g. ERT algorithm
- Minimum rectilinear steiner arborescence (MRSA) construction

Our Contributions

- A graph with a significantly smaller number of edges edge reduced graph $E R G$ is proposed.
- Two graphs, upper bound graph $U G$ and lower bound graph $L G$, are proposed.
- An efficient algorithm called UGLG algorithm is proposed.
- A batch algorithm is shown to further improve the performance of UGLG algorithm.
- We analyze different algorithms in the experiments and show that our algorithm can achieve a better trade-off between total tree length and maximum delay. The batch algorithm is also compared.

Outline

Introduction

Problem Formulation

The Algorithm

Experimental Results

Conclusions

RC Delay Model

Elmore Delay Model. (a) a net with a driver and two sinks. (b) We use π type distribute RC delay model. (c) The RC delay model of (a).

Problem Formulation

A graph $G(V, E)$ consists of $|V|-1$ sinks and a source s. Any node $i \in V$ and $j \in V$ are connected. Given a user defined parameter $\alpha(\alpha \geq 0)$, a tree T with root s is constructed on G such that:

$$
\begin{align*}
\operatorname{minimize} & \sum_{e_{i j} \in T} w_{i j} \tag{1}\\
& l_{s i}<=(1+\alpha) \cdot D_{i} \quad \forall i \in|V|-1
\end{align*}
$$

- $e_{i j}$ is the edge between node i and node j
- $w_{i j}$ is the edge length of $e_{i j}$
- $l_{s i}$ denotes the path length from s to sink i in T
- D_{i} denotes the shortest path length from s to sink i in $G(V, E)$.

Outline

Introduction

Problem Formulation

The Algorithm

Experimental Results

Conclusions

The Algorithm-Overview

ERG
construction
:---:
construction
:---:
Initialization
:---:
Technique

The Algorithm-Edge Reduced Graph (ERG)

UG and LG

construction

Data Structure Initialization

Edge Adding Technique

Definition

Edge Reduced Graph $E R G(V, E)$ Given a set of points V in the $\left(R^{2}, \ell_{1}\right)$ space, consider two points $i \in V$ and $j \in V$ with $x_{i} \leq x_{j}$. There exists an edge $e_{i j} \in E$ if and only if there is no point k at $\left(x_{k}, y_{k}\right)$ such that $x_{i} \leq x_{k} \leq x_{j}$ and $y_{i} \leq y_{k} \leq y_{j}$ or $y_{j} \leq y_{k} \leq y_{i}$.

The Algorithm-Edge Reduced Graph (ERG)

The Algorithm-UG and LG

Lower Bound Graph $L G\left(V, E^{\prime}\right)$

- edge $e_{p q} \in E^{\prime}$ iff $e_{p q}$ satisfies

$$
\begin{equation*}
D_{p}+w_{p q} \leq(1+\alpha) \cdot D_{q} \tag{2}
\end{equation*}
$$

(a)

$$
\begin{gathered}
D_{a}+w_{a c} \geq 1.5 D_{c} \\
10+21 \geq 30 \\
e_{a c} \text { not in } L G \\
\text { Similarly, } \\
e_{b c} \text { not in } L G
\end{gathered}
$$

(c)

(b)

(d)

The Algorithm-UG and LG

Upper Bound Graph $U G\left(V, E^{*}\right)$

- edge $e_{p q} \in E^{*}$ iff $e_{p q}$ satisfies

$$
\begin{equation*}
(1+\alpha) \cdot D_{p}+w_{p q} \leq(1+\alpha) \cdot D_{q} \tag{3}
\end{equation*}
$$

(a)

$e_{b c}$ not in $L G$
(c)

(d)

$$
\begin{gathered}
w_{a b}=8 \\
1.5 D_{a}+w_{a b} \geq 1.5 D_{b} \\
15+8 \geq 22.5 \\
e_{a b} \text { not in } L G
\end{gathered}
$$

(b)

The Algorithm-UG and LG

- Get shortest path length D_{i} for each sink $i \in V$
- Obtain upper bound graph $U G$ and lower bound graph $L G$
- Get a minimum spanning tree $T_{M_{-} U G}$ on $U G$
- Sort the edges in $L G$ in non-decreasing order

The Algorithm-Data Structure

- each node keeps more information
- speed up the algorithm
- initialized at the beginning
- updated during the process

The Algorithm-Edge Adding Technique

For $e \in$ edges in $L G$, try to add the edge e to $T_{M_{-} U G}$

(a) Update information C_{i} and δ_{i}

(c)Remove slack information

(b)Choose an edge to delete

(d)Add slack information

Examples of adding edge e_{43}

The Algorithm-Edge Adding Technique

- Safe checking
- Update C_{i} and δ_{i} of node i in two paths from s to p and q
- an edge $e_{u v}$ to delete
- Remove slack information
- Add slack information
- $T^{\prime} \leftarrow T$

The Algorithm-Rectilinearization

It compares each pair of adjacent edges and estimates a reduced cost according to their bounding box. The pairs giving the maximum cost reduction will be processed to remove overlapped edges.

The Algorithm-Batch Algorithm

$$
\begin{equation*}
\text { cost_reduction }=\Delta w-\Delta p a t h \tag{4}
\end{equation*}
$$

(d)UGLG Result

Outline

Introduction

Problem Formulation

The Algorithm

Experimental Results

Conclusions

Results-Benchmark Information

\# pins	sb18	sb16	sb4	sb10	sb1	sb3	sb5	sb7
$[0,10)$	730495	969721	772680	1842288	1174480	1167280	1069712	1831245
$[10,20)$	24472	17228	16855	31289	23310	34991	18163	62510
$[20,30)$	10887	7327	8724	13826	11180	15447	7624	27485
$[30,40)$	5060	5348	3755	9495	5842	6131	4671	11038
$[40,50)$	619	264	485	1201	879	1095	625	1641
$[50, \infty)$	9	14	14	20	19	35	30	26
total	771542	999902	802513	1898119	1215710	1224979	1100825	1933945

Results

Comparision Among Algorithms

Results

Overlapping Removal

PD-Steiner											
Benchmarks	AD	imprv.	MIND	imprv.	MAXD	imprv.	WL	imprv.	Runtime	imprv.	r
sb18	8.08	2.90\%	6.93	0.45\%	8.94	3.07\%	$6.50 \mathrm{E}+07$	-12.69\%	12.03	33.89\%	0.242
sb16	10.63	1.06\%	9.84	0.27\%	11.29	1.13\%	$9.66 \mathrm{E}+07$	-3.23\%	13.17	27.40\%	0.351
sb4	7.81	2.19\%	6.72	0.31\%	8.64	2.28\%	$7.60 \mathrm{E}+07$	-6.18\%	11.88	28.43\%	0.369
sb10	13.86	1.08\%	12.87	0.21\%	14.70	1.22\%	$2.14 \mathrm{E}+08$	-4.18\%	25.29	26.20\%	0.292
sb1	6.94	2.49\%	5.92	0.65\%	7.77	2.60\%	$1.02 \mathrm{E}+08$	-6.68\%	19.62	25.21\%	0.390
sb3	8.34	2.68\%	7.05	0.62\%	9.33	2.71\%	$1.25 \mathrm{E}+08$	-9.11\%	20.52	27.48\%	0.297
sb5	10.09	1.73\%	8.27	0.36\%	11.72	1.68\%	$1.13 \mathrm{E}+08$	-4.76\%	15.57	30.05\%	0.352
sb7	6.27	2.76\%	5.11	0.35\%	7.06	2.79\%	$1.56 \mathrm{E}+08$	-10.85\%	28.91	32.47\%	0.257
Average	9.00	2.11\%	7.84	0.40\%	9.93	2.18\%	$1.18 \mathrm{E}+08$	-7.21\%	18.37	28.89\%	0.319
OURS-Steiner											
Benchmarks	AD	imprv.	MIND	imprv.	MAXD	imprv.	WL	imprv.	Runtime	imprv.	r
sb18	8.01	3.80\%	6.86	1.57\%	8.86	3.95\%	$6.23 \mathrm{E}+07$	-8.06\%	14.78	18.73\%	0.490
sb16	10.63	1.08\%	9.83	0.35\%	11.29	1.13\%	$9.57 \mathrm{E}+07$	-2.24\%	15.28	15.77\%	0.504
sb4	7.78	2.58\%	6.69	0.81\%	8.61	2.67\%	$7.43 \mathrm{E}+07$	-3.89\%	13.84	16.63\%	0.687
sb10	13.86	1.14\%	12.85	0.32\%	14.69	1.27\%	$2.11 \mathrm{E}+08$	-2.73\%	28.92	15.59\%	0.466
sb1	6.93	2.63\%	5.91	0.85\%	7.76	2.75\%	$1.00 \mathrm{E}+08$	-4.36\%	23.70	9.66\%	0.630
sb3	8.28	3.37\%	6.99	1.38\%	9.26	3.43\%	$1.21 \mathrm{E}+08$	-5.83\%	24.44	13.63\%	0.589
sb5	10.08	1.85\%	8.25	0.61\%	11.71	1.77\%	$1.11 \mathrm{E}+08$	-3.21\%	20.65	7.26\%	0.551
sb7	6.21	3.73\%	5.06	1.44\%	6.99	3.73\%	$1.50 \mathrm{E}+08$	-6.66\%	34.74	18.85\%	0.559
Average	8.97	2.52\%	7.81	0.92\%	9.90	2.59\%	$1.16 \mathrm{E}+08$	-4.62\%	22.04	14.52\%	0.560

Results

Comparison with Batch Algorithm

Results

Comparison Among Proposed Techniques

Outline

Introduction

Problem Formulation

The Algorithm

Experimental Results

Conclusions

Conclusions

- $E R G$ is constructed with smaller edges.
- $U G$ and $L G$ owns good timing properties.
- data structure is designed for efficiency.
- two techniques overlap removal and batch algorithm are used.
- Results have better qualities.

Thanks!

