Simultaneous Timing Driven Tree Surgery in Routing with Machine Learning-based Acceleration

Peishan Tu, Chak-Wa Pui, Evangeline F. Y. Young

Department of Computer Science and Engineering, The Chinese University of Hong Kong

May 25, 2018

イロト イポト イヨト イヨト

Previous Work & Motivation

Preliminary

Problem Formulation

The Algorithm

Experimental Results

Previous Work & Motivation

- Preliminary
- **Problem Formulation**
- The Algorithm
- Experimental Results
- Conclusion

Previous Work

- Global routers without timing consideration [NCTUgr] [NTHURoute] [FastRoute] [MaizeRouter]
- Timing aware global routers optimized delay independently[Jiang00] [Tong03] [Minsik07] [Youssef10]
- Timing driven single net routing algorithms with the lumped resistance driver model_[Genjie17] [Charles18]

Motivation

- A simple and efficient technique to improve timing of timing-unaware global routers
- Optimize timing of the circuit using a better driver model
- Current driver model: Non Linear Delay Model(NLDM) and Composite Current Source (CCS) is sensitive to input slew and output load. The changing topology of net *i* will influence net *i* downstream gate delay

Previous Work & Motivation

Preliminary

Problem Formulation

The Algorithm

Experimental Results

Preliminary-Example

An example

A simple Circuit

Preliminary-Slack

Preliminary-RAT & AAT

 $rat_9 = \min(rat_{11} - d_{9 \to 11}, rat_{14} - d_{9 \to 14})$

RAT-Wire

RAT-Gate

AAT-Wire

 $aat_9 = \max(aat_6 + gd_{6\rightarrow 9}, aat_7 + gd_{7\rightarrow 9})$

AAT-Gate

Preliminary-Interconnect Delay

1. Interconnect delay calculation

$$d_{S \to T_1} = \sum_{k \in N} R_{k \to T_1} C_k \tag{1}$$

Preliminary-Circuit Element Delay

1.circuit element delay

capacitance x	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
<i>x</i> ₁	z ₁₁	z ₁₂	z ₁₃
x2	Z12	Z22	Z23
<i>x</i> ₃	Z13	Z23	Z ₃₃

 $L(x,y) = a_0 + a_1 x + a_2 y + a_3 x y$ (2)

$$\begin{split} gd_{10 \rightarrow 12} = & \mathsf{L}(capacitance_k, slew_{10}) \\ gd_{11 \rightarrow 12} = & \mathsf{L}(capacitance_k, slew_{11}) \end{split}$$

Preliminary-Slew

2. Circuit Element Slew

Previous Work & Motivation

Preliminary

Problem Formulation

The Algorithm

Experimental Results

Problem Formulation

If the slack information of each timing end point is positive, there is no timing problem in the circuit. To achieve that, we maximize the summation of slacks by reconnecting the critical sink.

$$\begin{array}{ll} \max & \text{TNS,} \\ s.t. & x_i \in \{0,1\} \quad \forall i \in N_c, \end{array}$$
 (3)

where x_i denotes whether the critical sink of each net $i \in N_c$ is reconnected

the pin will be reconnected of net $i \in N_c$:

- most negative slack
- parent is not source

Previous Work & Motivation

Preliminary

Problem Formulation

The Algorithm

Experimental Results

< 注 → < 注 →

э

Sac

12 / 22

Tree Surgery Technique - QP-based TST (QPTST)

Maximize source slack:

$$slack_{S} = rat_{S} - aat_{S}$$
$$= rat_{T_{1}} - d_{S \to T_{1}} - aat_{S} - gd_{l \to S}$$
$$= rat_{Y} - aat_{s} - (gd_{l \to S} + d_{S \to T_{1}})$$
(4)

minimize delay

 \rightarrow maximize delay reduction

Tree Surgery Technique-QPTST

Objective function:

$$\max \sum_{i=1}^{n} (\Delta d_{s \to j_x^i} x_i + \beta \Delta L_i)$$

$$s.t. \quad x_i = \{0, 1\} \quad \forall i \in N$$
(5)

Difference of interconnect delay:

$$\Delta d_{s \to j_x^i} = d_{s \to j_x^i}^o - d_{s \to j_x^i} \tag{6}$$

Difference of gate delay:

$$\begin{array}{c} Pinl \\ \hline Net j \end{array} \qquad \Delta L_i = L(cap_i^o, slew_l^o) - L(cap_i, slew_l) \\ = a_1(cap_i^o - cap_i) + a_2(slew_l^o - slew_l) \\ + a_3(cap_i^oslew_l^o - cap_islew_l) \end{array}$$
(7)

$$\Delta L_i = (a_1 + a_3 slew_l^o) \Delta cap_i x_i + (a_2 + a_3 cap_i^o) \Delta slew_l x_j$$

$$- a_3 \Delta cap_i \Delta slew_l x_i x_j$$
(8)

Congestion Aware QPTST

By adding **overflow penalty** po_i into the objective function, we can optimize timing and congestion simultaneously.

$$\max \sum_{i=1}^{n} (\beta \cdot \Delta L_{i} + \Delta d_{s \to j_{x}^{i}} x_{i}) + \boldsymbol{\alpha} \cdot \boldsymbol{po_{i}} \cdot \boldsymbol{x_{i}}$$

$$s.t. \quad x_{i} = \{0, 1\} \quad \forall i \in N_{c}$$
(9)

An example of how to calculate potential routing overflow.

Machine Learning-based Acceleration

-Solving MIQP($X^TAX + b^TX$)($|X| = N \approx 1$ million and A is very sparse) takes long time but prediction by ML is very quick($f^B(x) = \frac{1}{B} \sum_{b=1}^{B} f_b(x)$)(|x| = d and it may calculate |dBN|.)

-Our problem can be formulated as binary classification problem

Previous Work & Motivation

Preliminary

Problem Formulation

The Algorithm

Experimental Results

Benchmark Information

Designs	#nodes	#nets	clock periods (ns)
superblue10	1876103	1898119	10
superblue1	1209716	1215710	9
superblue16	981559	999902	5.5
superblue18	768068	771542	7
superblue3	1213253	1224979	10
superblue4	795645	802513	6
superblue5	1086888	1100825	9
superblue7	1931639	1933945	5.5

Experimental Results of Tree Surgery Technique.

Benchmarks		FLUTE Baseline**								Direct Connection*				
		WNS	r_wn	s Tl	١S	r_tns	stWL	r_stw	1	r_w	/ns	r_tns		r_stwl
superblue1	0	-1.65	0.0	0 -33.	10	0.00	2.05	0.00	דו	0.47	7%	2.47%	-1	13.92%
superblue	1	-0.50	0.0	0 -0.	46	0.00	0.96	0.00)	-0.26	5%	3.20%	-1	19.76%
superblue1	6	-0.46	0.0	0 -0.	76	0.00	0.93	0.00)	3.58	3%	25.18%	-1	14.74%
superblue1	8	-0.46	0.0	0 -1.	03	0.00	0.58	0.00)	-0.75	5%	2.10%	-2	23.30%
superblue	3	-1.01	0.0	0 -1.	50	0.00	1.14	0.00)	4.82	2%	5.79%	-1	18.87%
superblue	4	-0.62	0.0	0 -3.	47	0.00	0.71	0.00)	0.90)%	10.81%	-1	18.51%
superblue	5	-2.57	0.0	0 -6.	95	0.00	1.08	0.00)	0.07	7%	1.42%	-1	17.24%
superblue	7	-1.51	0.0	0 -1.	84	0.00	1.40	0.00)	0.00)%	3.54%	-2	23.56%
Averag	e	-1.10	0.0	0 -6.	14	0.00	1.11	0.00)	1.10)%	6.81%	-1	18.74%
Desistant		QPTST						Congestion Aware QPTST						
Deliciniarks	r_	wns	r_tns	r_stwl		r_d (CPU(s)	r_wns		r_tns	r_st	wl	r_d	CPU(s)
superblue10	0.9	92%	3.88%	-0.79%	11.5	52%	69.73	0.00%	2	2.11%	-0.48	% 11.80	0%	77.03
superblue1	1.7	76%	7.92%	-0.38%	16.1	18%	15.60	1.78%	4	1.81%	-0.37	% 16.19	9%	25.05
superblue16	3.9	94% 3	31.58%	-0.38%	12.5	52%	6.42	3.94%	29	9.57%	-0.36	% 12.54	4%	15.21
superblue18	2.2	27%	4.45%	-0.18%	18.7	75%	17.93	2.27%	4	1.45%	-0.18	% 18.75	5%	13.01
superblue3	5.6	51%	7.16%	-0.11%	15.7	78%	6.12	5.37%	6	5.76%	-0.09	% 15.80	0%	15.10
superblue4	1.6	50% 1	.5.33%	-1.79%	14.1	L0%	48.95	0.47%	15	5.19%	-1.58	% 14.29	9%	57.36
superblue5	0.3	32%	4.17%	-0.62%	14.1	18%	11.93	0.12%	2	2.29%	-0.27	% 14.48	8%	22.02
superblue7	0.0	00%	6.46%	-0.13%	18.9	96%	44.13	0.00%	3	3.21%	-0.08	% 19.00	0%	20.91
Average	2.0)5% 1	.0.12%	-0.55%	15.2	25%	27.60	1.74%	8	3.55%	-0.43	% 15.3	5%	30.71

 *Direct Connection: directly connect the critical sinks to the source for all nets.

▶ **WNS is in $10^4 ps$. TNS is in $10^6 ps$. stWL is in $10^8 um$.

Results-Performance Analysis on Timing and Routing Congestion

Timing Improvement: TNS improvement compared with the initial routing result

Overflow Increase: Routing overflow increased compared with the initial routing result

Experimental Results of Machine Learning Acceleration (MLA).

Benchmarks		ML		M	IL Over Ba	ise	ML Over QP			
	ACC	CPU(s)	QP-CPU(s)	r_wns	r_tns	r_wl	r_wns	r_tns	r_wl	
superblue18	97.13%	1.21	18.65	0.09%	3.89%	-0.18%	-0.01%	0.01%	0.00%	
superblue16	95.53%	1.54	6.31	5.24%	29.54%	-0.32%	0.10%	0.14%	0.00%	
superblue7	94.91%	1.59	45.63	0.00%	5.49%	-0.13%	0.00%	0.41%	0.00%	
superblue4	99.14%	6.39	49.13	1.55%	13.87%	-1.78%	-0.02%	0.11%	0.00%	
superblue1	82.74%	2.98	14.87	1.71%	6.10%	-0.38%	0.42%	1.28%	-0.06%	
superblue3	82.38%	1.13	6.16	3.67%	5.32%	-0.10%	0.37%	1.26%	-0.05%	
superblue5	83.19%	2.97	11.87	0.25%	3.40%	-0.57%	0.05%	0.06%	-0.01%	
superblue10	87.99%	7.73	61.68	0.73%	3.71%	-0.76%	0.07%	0.55%	-0.08%	

ACC: classification accuracy CPU:ML runtime QP-CPU:our solver runtime

ML Over Base:timing result of classifier compared with the initial routing solution

ML Over QP:timing result of classifier compared with our solver solution

Previous Work & Motivation

Preliminary

Problem Formulation

The Algorithm

Experimental Results

Contribution

- To optimize the tree topologies globally, a QP is formulated to determine how to adjust the most critical sink connection to optimize timing and congestion.
- We study various circuit properties and identified those that contribute to timing. Later, these features will be used to accelerate the QP-based tree surgery technique by a machine learning-based technique.
- Experimental results show that we can improve timing of the design significantly with small increase in routing congestion.

Thanks!